Parameters models
:tune
Tune a model from io data.
- Default value: nothing
- Accepted: nothing
- Method argument:
model
- Example:
model(:tune, project_name = "project", model_name = "model")
Mandatory parameters
The following parameters are mandatory in order to tune a model from input-output data.
project_name
Set project name of the tuning machine. After computation the model will be saved in this project
- Default value: nothing
- Accepted: string
- Method argument:
model(:tune, ...)
- Example:
model(:tune, project_name = "project")
io
Set the input-output data for tuning a model.
- Default value: nothing
- Accepted: string
- Method argument:
model(:tune, ...)
- Example:
model(:tune, io = "io_name")
Optional parameters
Model parameters
model_architecture
Set architecture of the tuning model.
- Default value: fnn
- Accepted: string: linear, fnn, rbf, icnn, resnet, polynet, densenet, neuralnetodetype1, neuralnetodetype2, rnn, lstm, gru
- Method argument:
model(:tune, ...)
- Example:
model(:tune, model_architecture = "resnet")
Please note that some architure allow iterative algorithms and hyperparameters are optimised, such as:
Architecture | Iterative |
---|---|
linear | [ ] |
fnn | [x] |
rbf | [x] |
icnn | [x] |
resnet | [x] |
polynet | [x] |
densenet | [x] |
neuralnetodetype1 | [x] |
neulranetodetype2 | [x] |
rnn | [x] |
lstm | [x] |
gru | [x] |
exploration_models | [x] |
where, [ ] not iterative and [x] iterative.
model_exploration
Set the model exploration.
- Default value: ["fnn", "rbf", "icnn", "resnet", "polynet", "densenet"]
- Accepted: vector of string: ["fnn", "rbf", "icnn", "resnet", "polynet", "densenet", "neuralnetodetype1", "neulranetodetype2", "rnn", "lstm", "gru"]
- Method argument:
model(:tune, ...)
- Example:
model(:tune, model_exploration = ["fnn", "resnet"])
model_sample_time
Set the model sample time of the neulranetodetype2.
- Default value: 1.0 second
- Accepted: Float
- Method argument:
model(:tune, ...)
- Example:
model(:tune, model_sample_time = 5.0)
Computation parameters
computation_maximum_time
Set the training time of the model.
- Default value: 15 minutes
- Accepted: Dates
- Method argument:
model(:tune, ...)
- Example:
model(:tune, maximum_time = Dates.Minute(5))
computation_solver
Set the solver for tuning model.
- Default value: adam
- Accepted: string, adam, radam, oadam, nadam, lbfgs, oaccel, pso, lls
- Method argument:
model(:tune, ...)
- Example:
model(:tune, method_solver = "lbfgs")
Please note that some solvers are specific to model, such as:
Architecture | adam | radam | oadam | nadam | lbfgs | oaccel | pso | lls |
---|---|---|---|---|---|---|---|---|
linear | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [X] |
fnn | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
rbf | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
icnn | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
resnet | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
polynet | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
densenet | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
neuralnet_ode_type1 | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
neuralnet_ode_type2 | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
rnn | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
lstm | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
gru | [x] | [x] | [x] | [x] | [x] | [x] | [x] | [ ] |
where, [ ] depicts no supported solvers and [x] depicts supported solvers.
computation_processor
Set the processor used during computation.
- Default value: cpu_1
- Accepted: String, cpu1, cputhreads, cpu_processes
- Method argument:
model(:tune, ...)
- Example:
model(:tune, computation_processor = "cpu_threads")
computation_verbosity
Set the therminal verbosity during computation.
- Default value: 0
- Accepted: 0 (no information), 1 (fragmented information) or greather than 1 (full information)
- Method argument:
model(:tune, ...)
- Example:
model(:tune, computation_verbosity = 5)
Neural networks parameters
neuralnet_activation_function
Activation function for neural networks.
- Default value: relu
- Accepted: String: relu, sigmoid, swish, tanh
- Method argument:
model(:tune, ...)
- Example:
model(:tune, neuralnet_activation_function = "relu")
neuralnet_minimum_epochs
Minimum epochs hyperparameter value.
- Default value: 50
- Accepted: integer and lower than
neuralnet_maximum_epochs
- Method argument:
model(:tune, ...)
- Example:
model(:tune, neuralnet_minimum_epochs = 50)
neuralnet_maximum_epochs
Maximum epochs hyperparameter value.
- Default value: 500
- Accepted: integer and higher than
neuralnet_minimum_epochs
- Method argument:
model(:tune, ...)
- Example:
model(:tune, neuralnet_maximum_epochs = 500)
neuralnet_minimum_layers
Minimum hidden layers hyperparameter value.
- Default value: 1
- Accepted: integer and lower than
neuralnet_maximum_layers
- Method argument:
model(:tune, ...)
- Example:
model(:tune, neuralnet_minimum_layers = 1)
neuralnet_maximum_layers
Maximum hidden layers hyperparameter value.
- Default value: 6
- Accepted: integer and higher than
neuralnet_minimum_layers
- Method argument:
model(:tune, ...)
- Example:
model(:tune, neuralnet_minimum_layers = 6)
neuralnet_minimum_neuron
Minimum neuron hyperparameter value.
- Default value: 3
- Accepted: integer and lower than
neuralnet_maximum_neuron
- Method argument:
model(:tune, ...)
- Example:
model(:tune, neuralnet_minimum_layers = 3)
neuralnet_maximum_neuron
Maximum neuron hyperparameter value.
- Default value: 10
- Accepted: integer higher than
neuralnet_minimum_neuron
- Method argument:
model(:tune, ...)
- Example:
model(:tune, neuralnet_maximum_neuron = 10)
neuralnet_batch_size
Batch size value when training neural network.
- Default value: 512
- Accepted: 128, 256, 512, 1024, 2048
- Method argument:
model(:tune, ...)
- Example:
model(:tune, neuralnet_batch_size = 512)
:ls
List the models that are available for a project.
- Default value: nothing
- Accepted: nothing
- Method argument:
model
- Example:
model(:ls; project_name = "...")
Mandatory parameters
The following parameters are mandatories in order to list model from a project.
project_name
Project name to list model.
- Default value: nothing
- Accepted: string
- Method argument:
model(:ls, ...)
- Example:
model(:ls, project_name = "project#1")
:rm
Remove model for a project.
- Default value: nothing
- Accepted: nothing
- Method argument:
model
- Example:
model(:rm, project_name = "...", name = "...")
Mandatory parameters
The following parameters are mandatories in order to delete model from a project.
project_name
Project name of the model to delete.
- Default value: nothing
- Accepted: string
- Method argument:
model(:rm, ...)
- Example:
model(:rm, project_name = "project1")
model_name
Name of the model to delete.
- Default value: nothing
- Accepted: string
- Method argument:
model(:rm, ...)
- Example:
model(:rm, model_name = "model1")
:stats
Presents information about the tuning model.
- Default value: nothing
- Accepted: nothing
- Method argument:
model
- Example:
model(:stats, project_name = "...", model_name = "...")
Mandatory parameters
The following parameters are mandatories in order to provide information about the tuning model from a project.
project_name
Project name of the model.
- Default value: nothing
- Accepted: string
- Method argument:
model(:stats, ...)
- Example:
model(:stats, project_name = "project1")
model_name
Name of the model.
- Default value: nothing
- Accepted: string
- Method argument:
model(:stats, ...)
- Example:
model(:stats, model_name = "model1")